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The classical view of wall-bounded turbulence considers a near-wall inner region where
all velocity statistics are universally dependent on distance from the wall when scaled
with friction velocity and the kinematic viscosity of the fluid. This is referred to as an
inner scaling and leads to Prandtl’s law of the wall. Data from numerical simulations
and experiments over the past decade or so, however, have provided compelling evidence
that statistics of the fluctuating streamwise velocity do not follow inner scaling in this
near-wall region and an interaction of outer and logarithmic regions exists, resulting in a
Reynolds number dependence. In this paper we briefly review some of these studies and
discuss the Reynolds number dependence of the streamwise turbulence intensity near the
wall in terms of an inner-outer interaction. An established model for such an interaction
between near-wall and logarithmic region turbulence is considered that comprises two
mechanisms: superposition and modulation. Here outer-region motions, of which a fraction
is wall-attached, are superimposed onto the near-wall dynamics, and concurrently the
near-wall motions are modulated by this superimposed signature. We discuss to what
extent the superposition effect can relate changes in the inner-scaled near-wall peak value
of streamwise turbulence intensity to logarithmic region turbulence resembling features of
attached eddies.
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I. INTRODUCTION

This article is an invited contribution resulting from the Stanley Corrsin Award Lecture delivered
by the first author at the 69th annual APS-DFD meeting in Portland, Oregon, USA, in 2016,
on the topic of wall-bounded turbulent flows. Such flows are commonly encountered in many
engineering, environmental, and geophysical applications, and therefore fundamental advances in
our understanding of wall turbulence can possibly lead to broad impacts across a range of fields.
Our paper, however, is not meant to be an exhaustive review, but rather, more a perspectives piece
intended to give a summary of some of the authors’ views presented during this lecture, and we extend
the discussion to consider a spectral coherence analysis as presented recently by Baars et al. [1,2],
focusing on the implications for scaling of the streamwise turbulence intensity due to inner-outer
interactions.

Throughout this paper x, y, and z refer to the streamwise, spanwise, and wall normal directions,
respectively, with u, v, and w representing the respective Reynolds decomposed velocity fluctuations.
Quantities with overbars refer to time averages, while angled brackets indicate ensemble averaged
quantities.

The Reynolds number of a turbulent boundary layer can be viewed as a measure of the range
of scales present in the flow. The friction Reynolds number Reτ ≡ δUτ/ν clearly embodies this,
representing a ratio between δ (the boundary layer thickness) and the viscous length scale ν/Uτ ,
where ν is the kinematic viscosity and Uτ is the friction velocity. Here Uτ = √

τo/ρ where τ0 is
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the wall shear stress. At any given Re, the near wall represents the region in a turbulent boundary
layer where the full range of scales will be most apparent. This is because an observation made
at the wall sees not only the small-scale near-wall structures that reside in this region, but also
a superposition of the larger u and v fluctuations originating from (attached) turbulent structures
that may be centered much further from the wall. This behavior is evident from energy spectra at
reasonably high Reynolds number, for example, in the spectrograms presented in Refs. [3,4].

The superposition of energy from a whole range of scales onto the near-wall region is now
a reasonably well-accepted and expected consequence of a hierarchical distribution of coherent
structures. This is also a central tenet of attached eddies in the sense of Townsend [5] or Perry and
Chong [6], whereby a hierarchical distribution of attached representative eddies that are linearly
superposed demonstrate a convincing description of many aspects of wall-bounded turbulence.
Regardless of the precise form of the “representative eddy,” attached eddy models all predict an
increasing range of scales, and hence an increasing broadband u intensity in the near-wall region, as
Reynolds number increases. This is in contrast to the classical description of near-wall turbulence,
which assumes an inner region (say, 0 < z+ < 30) that is independent from the outer region, such
that all time-averaged, inner-scaled, turbulence statistics can be expressed as universal functions of
z+. Clearly the increasing superposition of large-scale energy at high Reynolds numbers challenges
this classical position, and indeed a large number of studies have demonstrated that this is not the
case. Perhaps the clearest example is the growth in the near-wall peak of the broadband turbulence
intensity of the u fluctuations with increasing Reynolds number.

Caution must be exercised when interpreting data at z+ ≈ 15 at high Reynolds numbers due to
the spatial and temporal resolution challenges [7,8]. It is noted that at extremely high Reynolds
numbers, studies in pressurised facilities do not seem to show growth in this inner peak [9,10],
and this remains an open question. However, at Reτ � 30 000, there is now clear evidence that this
occurs [8,11–18], and that this growth in the peak is due to a growing superposition of larger-scale
energy from log and outer-region structures as Re increases [8,14,16]. Near-wall energy spectra, and
instantaneous views of this region, have also long hinted at the superposition of a growing range of
energetic scales as Re increases [3,4,19–21].

This superposition has some implications to the near-wall cycle of streaks and quasistreamwise
vortices [22–24] that populate the near-wall region of turbulent boundary layers. The pioneering work
in minimal channels by Jiménez and Pinelli [25] cemented the view that this cycle is “autonomous”;
it does not require external triggers from outer larger-scale eddies to self-sustain. As this region
has been probed at increasingly higher Reynolds numbers, a slightly refined view has emerged of
a near-wall cycle, which, though perhaps not dependent on external triggers for self-sustenance,
is increasingly coexisting within a sea of larger-scale superimposed energy as Re increases.
Interestingly, in this near-wall region these footprints of larger-scale events have an effect beyond a
purely linear superposition. It has been demonstrated through numerous experiments and simulations
that the small-scale energy in the near-wall region is also amplitude and frequency modulated by the
large-scale superimposed footprints. In the near-wall region, at least, this modulation is relatively
well explained by a quasisteady argument [26]. In short, once the scale separation between the small
scales and the larger superimposed scales is sufficient, we can assume that the small scales will
“feel” the large-scale footprint as a modulated boundary condition, via an altered wall shear stress.
For example, a large-scale positive u fluctuation will result in a large-scale quasisteady period of
enhanced wall shear stress (analogous to an enhanced local Reynolds number) to which the near-wall
structure and small scales will respond. As the local τ0 increases, the near-wall viscous scaled events
will respond such that their length, convection velocity, and fluctuation magnitude remain fixed in
local inner scaling. When viewed in terms of a global scaling, this will lead to a locally enhanced
amplitude and frequency of fluctuations during large-scale positive u fluctuations. This amplitude
and frequency modulation of the near-wall small-scale events, a predicted result of the quasisteady
assumption, has been described in a number of recent papers [26–29].
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An enhanced understanding of the interaction between large- and small-scale events has permitted
the formulation of models that can predict near-wall statistics based only on a knowledge of the
large-scale fluctuations measured in the logarithmic region of the boundary layer. For example, the
model put forward by Mathis et al. [30,31] assumes a universal near-wall signal (this universal signal
is the near-wall cycle, free of superposition or modulation, effectively equivalent to low Reynolds
number near-wall turbulence). The input large-scale fluctuation in the logarithmic region is used
to amplitude modulate this universal signal (based on a modulation coefficient predetermined from
a calibration experiment) and is also superimposed onto the modulated signal (with a magnitude
given by a predetermined superposition coefficient). Such models have been demonstrated to provide
reasonably reliable predictions of near-wall turbulent statistics at Reynolds numbers far removed
from the Re of the calibration experiment. As well as permitting predictions of near-wall statistics
in situations where such measurements would perhaps not be accessible, these models also provide
a conceptual model of how scales interact in the near-wall region and how this is likely to evolve
with Reynolds number.

In light of the above descriptions, and in particular their strong resonance with hypotheses relating
to attached eddies, it is worth briefly mentioning here recent evidence that seems to explicitly
demonstrate the existence of a hierarchical distribution of self-similar representative eddies. It is
puzzling that even today the term “attached eddy” should invoke so much controversy in the field,
when in the spirit of Townsend it was merely an attempt at proposing a distribution of representative
eddies that could provide an explanation for observed correlation statistics. The emphasis here
is on could; Townsend at no time seemed wedded to a particular characteristic eddy, and indeed
changed this proposed eddy throughout his career. Much of the current controversy seems to revolve
around the choice of this eddy, which, in many ways, seems of secondary importance compared
to the concept that a hierarchical distribution of some wall-attached eddy can provide a useful and
convincing description of many facets of wall-bounded turbulence. If we set aside arguments over
the precise form of a representative eddy, recent evidence points to the presence of such a hierarchical
distribution. Of note here is the review by Jiménez [32], who concludes that, using minimal channel
results of Flores and Jiménez [33], the logarithmic law reflects a structure agreeing reasonably well
with Townsend’s model of a self-similar family of attached eddies. Through analysis of filtered
and minimal channel simulations, Hwang [34] also made similar conclusions. In both cases the
self-similar “representative” eddy seemed reminiscent of the self-sustaining process observed for
the near-wall cycle by Jiménez and Pinelli [25] and Schoppa and Hussain [35]. Klewicki et al. [36]
showed that a self-similar hierarchical structure is required for invariant solutions of the leading-order
mean dynamics in the Navier-Stokes equations, and transient growth and resolvent analysis has also
revealed self-similar behaviors (reviewed by McKeon [37]). Experimentally, Hellström et al. [38]
have also reported (through proper orthogonal decomposition analysis of particle image velocimetry
data) self-similar energetic modes in pipe flow. Baars et al. [1] make use of coherence spectra
between a fixed near-wall probe and a probe traversing the outer region to uncover evidence of a
self-similar wall-attached structure. Since this structure is inferred from coherence spectra alone,
there are few available details of the representative eddy, other than a proposed aspect ratio of
geometrical self-similarity. However, in general the stochastic representative eddies determined
from experiments will tend to favor symmetrical representative eddies (typical of the double-roller
eddy types originally proposed by Townsend, or the hairpin- or lambda-shaped vortices prevalent
in recent literature [39,40]), while the recent advent of time resolved three-dimensional views
of these features typically yield a representative eddy that evolves in time, exhibiting various
asymmetries (cf. the self-sustaining process of Schoppa and Hussain [35]). The attached eddy
framework, as originally put forward by Townsend, was an attempt to explain time-averaged
statistics; however, recent papers [41,42] have demonstrated that a distribution of representative
eddies can produce instantaneous features that qualitatively match observed instantaneous behavior
in turbulent boundary layers regarding uniform momentum zones [43] and internal shear
layers [44,45].
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II. DEFINING FEATURES AT HIGH REYNOLDS NUMBER

A. Importance of the logarithmic region

While debate continues about the precise bounds of the logarithmic region in wall-bounded flows
[46–48], it is agreed that high-Reynolds-number data are a prerequisite for validating logarithmic
scaling behaviors in wall-normal profiles of the mean streamwise velocity and the streamwise
turbulence intensity [18,49]. For instance, when assuming that the logarithmic region in a turbulent
boundary layer (TBL) flow starts at an inner-scaled position of z+ ≈ 100, and ends at an outer-scaled
position of z/δ ≈ 0.15, the log region would be nonexistent for Reτ � 670. Moreover, Reτ � 6700
is required for the log region to span at least one decade in z. When adopting a more conservative
lower bound for the log region as z+ = 3Re1/2

τ , following Sreenivasan and Sahay [50], Klewicki
et al. [36], and Marusic et al. [49], one would require Reτ � 40 000 for the log region to span one
decade in z.

For investigations of how turbulence is (re)generated and sustained, the metric of turbulent
kinetic energy production becomes insightful. In particular, a defining feature of an increasing scale
separation with growing Reτ is the relative contribution to the kinetic energy production from the
different wall-normal regions [51,52]. Turbulent kinetic energy production is defined as the product
of the Reynolds shear stress and mean shear,

P = −uw+ du+

dz+ . (1)

Figure 1(a) presents premultiplied profiles of the kinetic energy production, z+P , for three values
of Reτ . In the semilogarithmic plot, the area under the curves is proportional to the global or bulk
kinetic energy production. When analyzing the contributing fraction of P in the near-wall region
(here taken as 0 < z+ < 30) to the bulk kinetic energy production (total area under the curves), it
is evident that this contribution decreases with increasing Reτ . This is shown by the dashed line in
Fig. 1(b). Consequently, the contribution to the bulk production from the log region increases.

For relevance to engineering systems, where Reτ ∼ O(104)–O(106), the main contribution to
the bulk production comes from the log region. And so, the predominant kinematics and dynamics
that drive the turbulence cascade in high-Reynolds-number wall-bounded turbulence occurs in the
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FIG. 1. (a) Premultiplied turbulence kinetic energy production, z+P , for three values of Reτ . Wall-normal
profiles of P were estimated using the formulations for the mean velocity profile (law of the wall wake) and the
corresponding Reynolds shear stress, following Perry et al. [53]. (b) Contributing fractions to the bulk kinetic
energy production from the production P in the near-wall region (taken as 0 < z+ < 30) and the log region
(70 < z+ < 0.15 Reτ ). Panels (a) and (b) were adapted from Ref. [51].
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log region. It is furthermore known that the dynamics in the outer region impacts the smaller-
scale dynamics in the near-wall region through a scale-interaction process. Therefore, the physical
underpinning of the (self-sustaining) dynamics in high-Reynolds-number flows can be fundamentally
different in comparison to lower-Reynolds-number flows, for which the self-sustaining near-wall
cycle is the dominant driver. This was recently further confirmed by Renard and Deck [54], who
showed that the bulk production of turbulent kinetic energy is directly reflected by the difference in
mean skin friction between laminar and turbulent flows, and consequently at high Reynolds numbers
the generation of the turbulence-induced excess friction is dominated by the logarithmic layer. They
further conclude that this suggests that it may be worth investigating new drag reduction strategies
focusing on turbulent kinetic energy production and on the nature of the logarithmic layer dynamics.

B. On the coherence along the wall-normal direction

An organization in high-Reynolds-number wall turbulence is most pronounced in the logarithmic
region where large-scale turbulent structures comprise significant lifetimes in the streamwise
direction [24,55]. This organization is often described via a classification of coherent structures [52],
including hairpin vortices, large-scale motions, and very-large-scale motions (or superstructures
[3]). In this section we focus on one explicit aspect of coherence in TBL flows: the portion of the
turbulence in the outer region that is coherent with a very-near-wall reference position (covered in
detail by Baars et al. [1]). This also serves as additional evidence for the direct linkage between
outer-region turbulence and the near-wall fluid dynamics.

A consistent coupling within the wall-bounded turbulence can be inferred from two-point
synchronized data. Here we consider one inner-region reference position at z+

I ≈ 4.4 for a
Reynolds number condition of Reτ ≈ 14 000 [1]. It is instructive to compute the coupling between
the outer-region turbulence (mapped out with synchronously acquired traversing probe) and the
inner-region fluctuations in spectral space to obtain a scale-by-scale (linear) correlation, which is
referred to as the linear coherence spectrum (LCS), defined as

γ 2
L(z,zI ; λx) ≡ |〈U (z; λx)U ∗(zI ; λx)〉|2

〈|U (z; λx)|2〉〈|U (zI ; λx)|2〉 . (2)

Here U (z; λx) = F[u(z)] is the Fourier transform of u(z). It is noted that the numerator equals
the cross-spectrum magnitude squared, while the two energy spectra of u(zI ) and u(z) form the
denominator. (Note that the asterisk indicates the complex conjugate, 〈〉 denotes ensemble averaging,
and || indicates the modulus.) Since γ 2

L incorporates only the magnitude of the cross-spectrum, the
value of γ 2

L represents the maximum correlation for a specific scale (corresponding to a certain
stochastically consistent phase shift of that scale, represented by the scale-dependent phase of the
complex-valued cross-spectrum). Consequently, γ 2

L equates to the fraction of common variance
shared by u(zI ) and u(z) (note that 0 � γ 2

L � 1). Since one coherence spectrum is obtained for
each u(zI )-u(z) combination, where z ranges from z+ ≈ 10.5 up to the free stream, we present
the coherence as γ 2

L iso-contours in Fig. 2. That is, the coherence spectrum for the streamwise
velocity fluctuations at zI and zO is obtained by slicing the γ 2

L contours at the outer-region position
zO . The coherence spectrogram is overlaid on the energy spectrogram of the streamwise velocity
fluctuations, shown as iso-contours of the premultiplied form kxφuu/U 2

τ . It is evident that only
the larger scales remain coherent with the near-wall reference zI when moving up throughout
the outer region. Baars et al. [1] interpreted the trend in the iso-contours of γ 2

L as a reflection of
geometrically self-similar wall-attached structures, and we refer to that work for further details. In the
triangular region bounded by an inner limit (λx/z = 14) and outer limit (λx/δ = 10) a portion of the
streamwise velocity fluctuations reflects this self-similar wall-attached eddy structure as envisioned
by Townsend [5].

We now consider u fluctuations only at two locations along the wall-normal direction, denoted
as u(zI ) and u(zO) (referring to the inner and outer regions, respectively). In Fig. 3 we present
three coherence spectra from two-point data of TBL flows. One curve corresponds to a direct
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FIG. 2. Premultiplied energy spectrogram kxφuu/U 2
τ (levels: 0.2:0.2:1.8) at Reτ ≈ 14 000 with an overlaid

coherence spectrogram γ 2
L(z,zI ; λx) relative to the reference location z+

I ≈ 4.4 (levels: 0.1:0.1:0.9), following
Baars et al. [1]. The hypotenuse of the triangle equates to λx/z = 14 and spans from z+ = 80 up to z/δ ≈ 0.71
(the right-hand side is located at λx/δ = 10).

numerical simulation (DNS) at Reτ ≈ 2000 [56], whereas the other two curves were generated from
experimental data taken in Melbourne’s boundary layer facility (Reτ ≈ 14 000 [29], using two-point
hot-wire anemometry) and data taken at the SLTEST facility in the atmospheric surface layer (ASL)
(Reτ ≈ 1.4 × 106 [57], using sonic anemometry above a wall-shear-stress sensor).

For all three data sets, the outer-region position was chosen as z+
O ≈ 3.9Re1/2

τ , following Mathis
et al. [31], and resides within the logarithmic region (note that for the discussion that follows we
could choose any outer position within the log region). A near-wall reference sensor at z+

I ≈ 4.4
captured the near-wall u fluctuations for the Reτ ≈ 14 000 case, which was considered in Fig. 2 (and
a matching inner-scaled position of z+

I ≈ 4.3 was taken in the DNS case). A purpose built wall-
flush-mounted shear-stress sensor captured the wall-shear stress fluctuations for the Reτ ≈ 1.4 × 106

flow. An increasing trend of the inner-outer coherence with increasing wavelength is apparent in
all three data sets and collapses when the wavelength axis is normalized by the outer position, e.g.,
λx/zO . Baars et al. [1] described this Reynolds number universality as the result of a self-similar
structure embedded within the wall-attached turbulence, consistent with an attached-eddy structure
conceptualized by Townsend [5]. The logarithmic increase in γ 2

L was quantified with the expression
in Fig. 3 and its corresponding trend line is shown in the figure [1]. The self-similar range of scales
increases logarithmically with Reτ . Coherence spectra for the full range of outer positions, relative to
the near-wall reference position, suggest that a wall-attached and self-similar structure is ingrained
in the u fluctuations for Reτ ∼ O(103)–O(106). In (λx,z)-space, these u fluctuations reside within a
region defined by an inner-scaling limit of λx/z ≈ 14 and an outer-scaling limit of λx/δ ≈ 10; this
region may appear down to a lower limit of z+ ≈ 80 (as indicated in Fig. 2 [1]).

At the large-wavelength end of Fig. 3, γ 2
L spectra plateau to a magnitude that increases with

Reτ . This is caused by the transition from the self-similar increasing trend, to the scale-independent
trend, which appears at λx/δ ≈ 10. For reference, the curves in Fig. 3 extend up to λx ≈ 12δ (spatial
DNS), λx ≈ 27δ (Melbourne), and λx ≈ 34δ (SLTEST). Note that for temporal data (Melbourne
and SLTEST data) the frequencies were transformed to wavelengths using the local mean velocity
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FIG. 3. Linear coherence spectra γ 2
L(zI ,zO,λx) between inner- and outer-region positions in a TBL flow

(zI and zO , respectively), at three Reτ conditions. Atmospheric surface layer data of (MH07) Marusic and
Heuer [57], laboratory data of (BHM17) Baars, Hutchins, and Marusic [29], and DNS data of (SJM13) Sillero,
Jiménez, and Moser [56]. Positions zI and zO are listed in the legend and described in the text. Note that the
wavelength axis is presented as λx/zO . The logarithmic increase in the coherence, per the expression in the
figure, is described in the recent work by Baars, Hutchins, and Marusic [1].

at the outer position, u(zO). A promising result of Fig. 3 and the study by Baars et al. [1] is that
high-Reynolds-number flows include a larger range of energetic scales that are coherent in the
wall-normal direction (relative to the total range of energetic scales). Again, this coherence reflects
a self-similar structure of wall-attached turbulence and the existence of wall-coherent larger-scale
motions [43]. The maximum coherence of γ 2

L ≈ 0.9 in the Reτ ≈ 1.4 × 106 data is exceptionally high
for two-point turbulence applications (note that the relatively poor transition from the self-similar
trend to the plateau at large λx/zO is caused by difficulties in accurately capturing the very large-scale
motions in the ASL, e.g., due to the variation in free-stream velocity and issues of convergence).

Moving forward, the illustrated aspect of strong coherence along the wall-normal direction may
be used for a linear stochastic estimate (LSE) of the turbulence [58]. For a single-input or -output
system, a stochastic estimate evaluates a conditional output from an unconditional input, via a
stochastic transfer kernel. When performing the estimate in spectral space [59], a complex-valued
linear transfer kernel HL captures how the output is stochastically coupled with the input, for each
Fourier scale (linear). When taking u(zO) as input, and u(zI ) as output, the kernel is defined as

HL(zI ,zO ; λx) ≡ 〈U (zI ; λx)U ∗(zO ; λx)〉
〈|U (zO ; λx)|2〉 = |HL|ejφ. (3)

Here the gain squared is related to the LCS of Eq. (2) via the ratio of the output-input energies,
following

|HL(zI ,zO ; λx)|2 = γ 2
L(zI ,zO ; λx)

〈|U (zI ; λx)|2〉
〈|U (zO ; λx)|2〉 , (4)

whereas phase φ of Eq. (3) embeds the scale-dependent stochastic phase shift for all coherent scales.
A time-domain estimate û(zI ) is now found from the inverse Fourier transform of the spectral LSE,
according to

û(zI ) = F−1[Û (zI ; λx)], where Û (zI ; λx) = HL(zI ,zO ; λx)F[u(zO)]. (5)
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Here the spectral estimate consists of a single multiplication of the kernel and the Fourier-space
representation of the unconditional input. During estimation, all coherent scales are thus weighted
properly via the gain, while the scale-dependent phase efficiently accounts for the correct stochastic
shift (and thus accounts for the well-known inclination of the larger, coherent scales in TBL flows;
see, e.g., Refs. [57,60]). Baars et al. [29] presents an illustration of the conditional output of the
boundary layer fluctuations via such a procedure. In the context of inner-outer interactions, the strong
coherence—and thus the applicability of a spectral LSE for predicting the coherent scales—warrants
its use in the inner-outer interaction model [2,30,31], which is reviewed next.

C. A review and illustration of the inner-outer interaction model

For any input-output system, a strong (linear) coherence opens avenues for predictive models.
Here we revisit the inner-outer interaction model (IOIM) introduced by Marusic et al. [30] (details
given in Refs. [26,61]). Streamwise velocity fluctuations at an outer-region position, zO , form
the input, while the u fluctuations at positions in the inner region are considered as outputs. In
practice, such a predictive model may be used for generating turbulence statistics near the wall
in high-Reynolds-number experiments, where sensor limitations pose measurement restrictions, or
as a wall-model in large eddy simulations [62]. The model elucidates the inner-outer interaction
(or input-output relation) as a twofold process, in which the two components are identified as
superposition and modulation. An expression for the model via the recently refined description by
Baars et al. [2] is given as

u+
p (z+,t+) = u∗(z+,t+){1 + 	(z+)̂u+(z+,t+)}

modulation

+ û+(z+,t+)

superposition

, (6)

where û+ is constructed via the spectral LSE procedure mentioned in Sec. II B, so

û+(z+,t+) = F−1[Û+(z+; λx)], where Û+(z+; λx) = HL(z+,z+
O ; λ+

x )F[u+(z+
O,t+)]. (7)

Here the time dependence, t , can also be a spatial dependence. In Eqs. (6) and (7), u∗(z+,t+), 	(z+)
and HL(z+,z+

O ; λ+
x ) are given parameters of the IOIM and are found from a two-point calibration

experiment. Hence, the input to the IOIM—for a given Reτ —is the viscous-scaled fluctuating signal
u+(z+

O,t+) in the logarithmic (outer) region, generally taken at z+
O = 3.9Re1/2

τ following Mathis
et al. [31]. Aside from the predictive capability, the model provides a simple but robust description
of the inner-outer interactions between the near-wall and outer-region turbulence. We now proceed
with an illustrative review of both the superposition and modulation term in Eq. (6) and highlight
their physical underpinning.

1. Superposition component of the IOIM: Stochastic estimation

Superposition entails the linear coherence as reviewed in Sec. II B. That is, a portion of the
near-wall fluctuations at an inner-region position z+ that is coherent with the outer-region fluctuations
at z+

O can be predicted via the spectral LSE procedure. The accuracy of the estimate (in terms of
energy) is described by the coherence curve γ 2

L(z+,z+
O ; λx). For small wavelengths, γ 2

L ≈ 0, meaning
that energy at these scales is not included in an LSE. These coherent scales need to be modeled
and are included in the modulation term (Sec. II C 2). At the large wavelength end of the spectrum,
γ 2

L plateaus (e.g., to γ 2
L ≈ 0.8 for the Reτ ≈ 14 000 curve in Fig. 3). Hence, at the larger scales the

stochastically estimated fluctuations at z+, denoted as û+(z+,t+), comprise a ∼0.8 fraction of the
energy residing at these scales.

In the original formulation of the IOIM [30,31], the superposition component was formed by
imposing a predefined energy portion of the outer-region signal (energetic scales residing at λ+

x >

7000) onto the z+ position. In this procedure the large-scale outer-region signal was scaled by a
single gain factor and shifted by a single time shift to account for the wall-normal inclination of the
large-scale structures in wall turbulence (recall that the input-output locations are separated only in
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(a) raw field: u(x, y) at z+
I ≈ 4.3 (c) raw field: u(x, y) at z+

O ≈ 165

(b) filtered field: uF (x, y) at z+
I ≈ 4.3 (d) filtered field: uF (x, y) at z+

O ≈ 165

(e) comparison of uF (x, y) fields at zI and zO:

retain +’ve
contour only

zero-contour
shown in black

FIG. 4. Illustrating the superposition in the IOIM: coherence between the large-scale structures in the
near-wall region and the outer region. (a) Streamwise velocity fluctuations in the wall-parallel plane at z+

I ≈ 4.3.
Data are from the DNS of Sillero et al. [56] at Reτ ≈ 2000. (c) Similar to (a) but with the filtered fluctuations;
the long-wavelength pass filtering procedure is described in the text. (b, d) Similar to (a, b) but for a wall-normal
location of z+

O ≈ 165. (e) Match between the filtered fields in the inner and outer regions. All contours range
from −3 (negative: blue) to +3 (positive: red) standard deviations of each respective field.

the z direction). This original procedure condenses to single-time LSE; Baars et al. [2] reviews that
spectral LSE (or multi-time LSE) has a few inherent advantages over single-time LSE, since the
scaling and shifting procedures are efficiently performed per Fourier scale with one multiplication
in spectral space (Eq. 7). Moreover, the manual choice of the predefined energy portion (e.g.,
λ+

x > 7000) is eliminated since the scale-dependent gain in the spectral LSE results in an estimation
of the coherent scales only (a data-driven method).

In summary, the superposition component forms the portion in the prediction, u+
p (z+,t+), that is

linearly coherent with the input turbulence. Thus, superposition in the IOIM refers to a stochastic
estimation (commonly applied to extract a coherent structure; see Refs. [63–69] among others). An
illustration of the coherence between the inner and outer regions of a TBL flow is shown in Fig. 4.
Streamwise velocity fluctuations in two wall-parallel planes at z+

I ≈ 4.3 and z+
O ≈ 165, are shown

in Figs. 4(a) and 4(c), respectively. Note that the amplitude of the contour spans −3 to +3 standard
deviations of the respective field shown (applies to all fields shown in Figs. 4 and 5). These data are

100502-9



INVITED ARTICLES

IVAN MARUSIC, WOUTIJN J. BAARS, AND NICHOLAS HUTCHINS

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Δx/δΔx/δ

Δ
y
/
δ

Δ
y
/
δ

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Δx/δΔx/δ

Δ
y
/
δ

Δ
y
/
δ

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Δx/δ

Δ
y
/
δ

(a) u[(x, y) − uF (x, y)] at z+
I ≈ 4.3 (Fig. 4a minus 4b) (c) u(x, y) at z+

I ≈ 4.3 (duplicate of Fig. 4c)

(b) filtered envelope of (a): EF (x, y) at z+
I ≈ 4.3 (d) uF (x, y) at z+

O ≈ 165 (duplicate of Fig. 4d)

(e) comparison of EF (x, y) at zI and uF (x, y) at zO:

retain +’ve
contour only

zero-contour
shown in black

FIG. 5. Illustrating the modulation in the IOIM: modulation of small-scale near-wall structures by the
larger scales that are coherent with the outer-region (e.g., modulation of universal scales by the superposition
component). (a) Short-wavelength pass filtered streamwise velocity fluctuations in the wall-parallel plane at
z+

I ≈ 4.3, identical to u(x,y) − uF (x,y), the raw and long-wavelength pass filtered fields are shown in Figs. 4(a)
and 4(b), respectively. (b) Long-wavelength pass filtered field of the envelope of the fluctuations shown in (a).
Recall that the fluctuations in (a) do not comprise energy at these long wavelengths, but a long-wavelength
variation appears in the envelope of the fluctuations (e.g., modulation). (c, d) Duplicates of Figs. 4(c) and 4(d).
(e) Match between the envelope of the smaller scale fluctuations at z+

I and the filtered field in the outer region.
All contours range from −3 (negative: blue) to +3 (positive: red) standard deviations of each respective field.

taken from the same DNS data [56] as used in Fig. 3; Reτ ≈ 2000 at the streamwise center of the

x = 10δ long domain.

To highlight the coherent nature of the raw velocity fields u(x,y) at zI and zO , both fields are
filtered with a long-wavelength pass filter in λx space and subsequently in λy space. The filter in λx

is taken as the coherence function γ 2
L(zI ,zO ; λx) of Fig. 3. The same LCS is used for the subsequent

filtering procedure in the spanwise direction, but with an aspect ratio of λx = 3λy (characteristic
for hairpin vortex packets [34]). Although the two-dimensional LCS can be computed in (λx,λy)
space from the DNS data [70], rescaling the λx-dependent LCS with an aspect ratio of λx = 3λy

is justified here since this serves an illustrative purpose only. Filtered inner- and outer-region fields
uF (x,y) are shown in Figs. 4(b) and 4(d). Since the long-wavelength pass filter retains only the

100502-10



INVITED ARTICLES

SCALING OF THE STREAMWISE TURBULENCE . . .

coherent portions of the fluctuations, these two fields are strongly correlated to a degree represented
by γ 2

L (thus with a correlation of ≈0.5 at the largest streamwise scales on the order of the 10δ long
domain; see Fig. 3). In physical space this degree of coherence is illustrated in Fig. 4(e), where the
positive fluctuations of the inner field are reshown with an overlaid zero contour of the fluctuations
in the outer region. Note that the latter is shifted backwards (towards smaller x) to account for the
inclination of the coherent structures. Per the discussion in Sec. II B, the coherence between zI and
zO becomes stronger with increasing Reτ and spans a larger range of the energetic scales. Therefore,
if Fig. 4(e) would be available for ASL data, the match of the inner and outer fields would be even
more pronounced.

2. Modulation component of the IOIM: Scale interaction of universal scales

Only the coherent scales between the prediction (z+) and input (z+
O) locations are included in

the superposition component of Eq. (6). Incoherent scales cannot be estimated and have to be
modeled. In the modulation term of Eq. (6), u∗(1 + 	û+), the viscous-scaled velocity fluctuations
u∗ (superscript + is omitted for convenience) are stochastically incoherent with z+

O and are fused
with the coherent superposition imprint during the prediction. Physically, the universal signal is
envisioned as the inner-scaled velocity fluctuations that would exist at the prediction location in the
absence of any imposed dynamics from the outer region. In a trail of observations it was identified
that a scale interaction exists between the larger (coherent) scales and the smaller (incoherent) scales
[4,16,19,29,71]. Close to the wall this interaction appears as an amplitude modulation (AM), meaning
that the amplitude of the small-scale velocity fluctuations comprise a large-scale varying component,
which is proportional to the large-scale velocity fluctuations (for details see Refs. [1,61]).

An illustration of the modulation is shown in Fig. 5. That is, Fig. 5(a) presents the short-
wavelength pass filtered field of the u fluctuations at z+

I , which is constructed by removing the
long-wavelength pass filtered field from the raw fluctuations: e.g., the difference between u(x,y)
in Fig. 4(a) and uF (x,y) in Fig. 4(b). Hence, there is no energy in [u(x,y) − uF (x,y)] at the long
wavelengths. However, the variation in the amplitude of the small-scale fluctuations does include
a large-scale component, which is visualized in Fig. 5(b). First, an envelope to the u fluctuations
in Fig. 5(a) is constructed via a Hilbert transform [61] or wavelet transform [72] technique (note
that Agostini et al. [73] highlighted that this modulation is asymmetric in nature). This envelope
field is long-wavelength pass filtered to construct the EF (x,y) field shown in Fig. 5(b). Clearly,
large-scale regions exist where the small-scale fluctuations are more intense [EF (x,y) > 0] than
the average intensity in Fig. 5(a), and likewise, regions exist where the small-scale fluctuations
are damped relative to their average intensity [EF (x,y) < 0]. The modulation envelope is strongly
correlated with the superposition signature (closely resembling the filtered field in the outer region)
as is illustrated with the overlaid fields in Fig. 5(e). Physically the near-wall modulation can be
described with a quasisteady, quasihomogeneous framework, in which the smaller-scale motions in
the near-wall region respond to the superposition of larger-scale fluctuations as if they are subject to
a local Reynolds number change (see Refs. [1,27]).

During the construction of the universal signals u∗(z+,t+) from a calibration data set, the ingrained
AM is removed (details are described elsewhere [2,31]). When a prediction is made via Eq. (6), signal
u∗ is modulated with the superposition component via the term (1 + 	û+). Here 	 is a coefficient
prescribing the AM strength. Note that the modulation factor does not influence even order moments
of u+

p (thus the energy distribution and turbulence intensity are unaffected). Odd-order moments,
however, such as the skewness, are affected by modulation [31].

To summarize, for smooth-wall flows, an IOIM has been able to accurately predict streamwise
velocity fluctuations in the inner region of wall-bounded flows, given an outer-region input [2,30,31].
The predictions generate statistically representative signals, meaning that they comprise the correct
energy spectrum and even- and odd-order moments. Energetic scales included in the superposition
signature furthermore include the correct phase information at the near-wall position, directly induced
from the outer-region input and the LSE procedure. It is unavoidable that the phase information of the
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incoherent, universally modeled scales is irrelevant, due to their incoherent nature over the typical
wall-normal separation distances employed in the IOIM (e.g., |z+

O − z+
I |). Mathis et al. [26] has

shown that the IOIM could also be used for predicting fluctuating signals of the wall-shear stress.
Under specific conditions, and with new sets of calibration parameters, the model is also applicable
to rough-walled flows [74,75].

III. IMPLICATIONS FOR SCALING OF THE STREAMWISE TURBULENCE INTENSITY

With the framework of the IOIM in mind, this section focuses on the scaling of the streamwise
turbulence intensity in zero-pressure gradient TBL flows. In particular the scaling of the inner peak
is discussed, in relation to the logarithmic decay in the outer region. Scaling laws and associated
models for the streamwise turbulence intensity are to date still an active research subject and topic
of debate (see overviews in Refs. [48,76,77], among others).

A. Experimental data and corrections for spatial resolution

Wall-normal profiles of the streamwise velocity fluctuations in fully developed ZPG TBL flows
were acquired in Melbourne’s boundary layer facility. One set of hot-wire anemometry data is
documented in table 2 of Marusic et al. [78] and includes 10 Reynolds numbers ranging from
Reτ ≈ 2800 to 13 400. Another set of data used in this section comprises five Reynolds numbers in
the range of Reτ ≈ 2800 to 19 000, documented in Hutchins et al. [8].

For two Reynolds numbers, wall-normal profiles of u2
+

are shown against the outer-scaled
wall-normal coordinate, z/δ, in Fig. 6. Raw data are presented with the dashed-line profiles, which
were acquired using hot wires with a viscous-scaled length of l+ ≈ 26.1 and l+ ≈ 22.7, for the
Reτ ≈ 2800 and 13 400 data, respectively. Since such a typical hot-wire sensor length results in an

attenuation of the resolved energy u2
+

, a correction scheme described by Smits et al. [79] is applied
to all data. Streamwise turbulence intensity profiles corrected for the limited spatial resolution are
presented with the solid lines in Fig. 6. All profiles shown in the remainder of this section are
corrected in a similar manner. Preliminary work with Princeton NSTAP probes (miniature hot wires)
in Melbourne’s boundary layer facility confirms that the correction scheme and the scaling behaviors
to be described next (Sec. III B) are valid for the Reτ range considered in this paper. These new
measurements were fully resolved (without any sensor attenuation) since the hot-wire length was
l+ � 3.5, which is similar to typical spanwise resolutions used in DNS studies.
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FIG. 6. Streamwise turbulence intensity profiles acquired in Melbourne’s boundary layer facility [78] with
(solid lines) and without (dashed lines) corrections for limited spatial resolution of the hot wire.
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FIG. 7. Streamwise turbulence intensity profiles acquired in Melbourne’s boundary layer facility [78],
corrected for limited spatial resolution. The subfigures sequentially employ an (a) outer, (b) log, and (c)
inner scaling of the wall-normal coordinate on the abscissae. Here A2 = A1/2 = 0.63, C = 3.80, and hence
B2 = 5.51 (see description in the text).

B. Scaling of the streamwise turbulence intensity in the inner and outer regions

For the data comprising the 10 Reynolds numbers [78], wall-normal profiles of u2
+

are shown as
a function of z/δ in Fig. 7(a). A trend line for the logarithmic behavior in the outer region, following

u2
+ = B1 − A1 ln

(
z

δ

)
, (8)
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FIG. 8. Peak in the streamwise turbulence intensity, u2
+
max, as a function of Reτ . DNS data of (LM15)

Lee and Moser [17] at Reτ ≈ 550, 1000, and 5200 (channel), (HJ06) Hoyas and Jiménez [16] at Reτ ≈ 2000
(channel), and (SJM13) Sillero, Jiménez, and Moser [56] at Reτ ≈ 2000 (TBL). Experimental data of (M15)
Marusic et al. [78], acquired in Melbourne’s boundary layer facility, and of (V13) Vincenti et al. [81], acquired
in the Flow Physics Facility (FPF).

captures the data reasonably well around z/δ = 0.15. Here A1 = 1.26 [49] and the additive constant
is taken as B1 = 2.10. Maxima of the streamwise variance appear in the near-wall region, nominally
at z+

max ≈ 15 for ZPG TBL flows. Therefore, the peak in the variance profiles marches to lower values
of z/δ when Reτ increases. Consistent with previous studies [8,12,80] the magnitude of the inner

peak u2
+
max increases with Reτ . A logarithmic curve [note the semilogarithmic axes in Fig. 7(a)],

similar to Eq. (8) but now with constants A2 and B2 via

u2
+
max = B2 − A2 ln

(
zmax

δ

)
, (9)

is seen to agree well with the data. This logarithmic trend was recently observed by Lee and Moser
[17] who performed DNS channel flow up to Reτ ≈ 5200. When Eq. (9) is rearranged to a Reynolds
number dependence while accepting that z+

max ≈ 15, we obtain that the peak variance adheres to

u2
+
max = B2 − A2 ln(15) + A2 ln(Reτ ) = C + A2 ln(Reτ ). (10)

Peak values of the streamwise variance as a function of Reτ are shown in Fig. 8. DNS channel
data of Lee and Moser [17] are considered, as well as the DNS channel data of Hoyas and Jiménez
[16], which matches the TBL DNS data point of Sillero et al. [56]. Experimental TBL data from
Melbourne correspond to Fig. 7(a), and the additional data shown were taken at the Flow Physics

Facility (FPF), reported by Vincenti et al. [81], where, again, the u2
+
max values are corrected for

spatial resolution using the scheme of Smits et al. [79]. Lee and Moser [17] reported Eq. (10) with
C = 3.66 and A2 = 0.642, shown with the dashed line in Fig. 8. We here recognize that a slope of
A2 = A1/2 = 0.63 represents the trend in the data equally well; this is shown by the fitted solid line.
The additive constant for the latter trend line was determined by fitting Eq. (10) with A2 = A1/2
to the five DNS data points, resulting in C ≈ 3.80 (and B2 ≈ 5.51). A hypothetical discussion of
how A2 may be related to the logarithmic behavior in the outer region, captured by A1, is provided
in Sec. III C. Recall that the profiles in Fig. 7 and the associated peak values in Fig. 8 are obtained
after correcting the raw data for the limited hot-wire spatial resolution (Sec. III A). Since Marusic
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FIG. 9. Sketch of streamwise turbulence intensity profiles following a simplified attached eddy model. Each
subsequent profile is subject to an equal increment in Reτ ; an increasing intensity corresponds to increasing
Reτ , and the same values of Reτ are envisioned in panels (a) and (b). (a) The smallest attached eddy scales in
viscous units (100ν/Uτ ), and in (b) it scales with Re1/2

τ . The orange and red lines track z+
max = 15.

et al. [78] performed the fit of Eq. (9) to the raw data, constants A2 and B2 reported here have
changed.

Figure 7(b) further emphasizes the scaling behavior of the inner peak by showing the streamwise
variance, minus A2 ln(Reτ ) (Fig. 7 employs A2 = A1/2 = 0.63, C = 3.80, and B2 = 5.51). With
this ordinate the peaks in the streamwise variance follow the horizontal line at C = 3.80. Note that
the wall-normal axis is presented in terms of a log-scaling, following z+/Re1/2

τ , to highlight that the
outer-region scaling (Eq. 8) roughly holds up to a lower limit z+ ∝ Re1/2

τ . Finally, Fig. 7(c) is similar
to Fig. 7(b) but with an inner scaling of the wall-normal coordinate. Not just the peak variance shows
excellent collapse, but the profiles collapse for a great extent of the near-wall region, e.g., z+ � 30,
suggesting that there is a universality of the inner peak in the absence of an energy contribution that
grows logarithmically with Reτ following Eq. (9). The outer-region superposition of energy onto a
universal inner peak is addressed next.

C. Relating the inner peak scaling to the logarithmic behavior in the outer region

According to the classical model of an attached eddy structure, sketched out by Perry and Chong
[6], the wall-normal extent of the smallest attached eddy scales with inner variables, e.g., 100ν/Uτ .
Subsequently, when the outer-region streamwise variance follows Eq. (8), an increasing Reτ should
result in an increase of the streamwise variance in the near-wall region (e.g., the increase of the peak
variance) following Eq. (9) with A2 = A1 = 1.26. Here it is assumed that the streamwise variance in
the outer region is superposed onto a viscous-scaled universal inner-peak in a one-to-one fashion (in
other words, all energy is superposed without any “leakage”). This represents the classical view of
the geometrically self-similar hierarchy of inertia-dominated motions, spanning z+ = 100 to z ∼ δ

[schematically shown in Fig. 9(a)]. Clearly, the data in Fig. 7 do not support this.
In the classical view the smallest attached eddy coincides with the start of a logarithmic region [5].

An alternative view is that the smallest attached eddy scales with a lower bound of the logarithmic
region according to z+ ∝ Re1/2

τ (see Sreenivasan and Sahay [50], Klewicki et al. [36], and Marusic
et al. [49]). In that case a growth in Reτ results in an increase of the streamwise variance in the
near-wall region via Eq. (9) with A2 = A1/2 = 0.63; this case is sketched in Fig. 9(b). The data in
Fig. 7 seem to support this model. However, in both these simplistic views of the classical attached
eddy model [Figs. 9(a) and 9(b)], only the total streamwise turbulence intensity is considered (thus
the integrated energy over all scales). Equation (8) describes the scaling of the cumulative energy.
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The underlying assumption that all energetic scales in the outer region are one-to-one attached to the
wall conflicts with the results reviewed in Sec. II B, which showed that only portions of the energy
residing at scales λx/z � 14 in the outer region are linearly coupled with the near-wall region [1].
To summarize, the turbulence in the outer region that is not coherent with the wall (generally the
smaller-scale motions) adds to the total energy in the outer region, but is not superposed onto the
wall (at least not via a linear coherent and stochastic mechanism). On the contrary, the attached
eddy model accounts for only wall-attached (wall-coherent) contributions. It is therefore necessary
to investigate the attached nature of the turbulence, and the associated scaling relations of the outer
and inner regions [Eqs. (8) and (9)] as a function of scale; for this we go to spectral space.

As reviewed in Sec. II C, Baars et al. [2] formulated the superposition component of the IOIM
[30,31] in terms of an LSE procedure. This guaranteed that the superposed fluctuations at an inner-
region position z+

I , from an outer-region input z+
O , contain only the linearly coherent fluctuations

between these two positions (and strictly speaking only for the Reτ corresponding to the calibration
experiment from which the kernel is found: Reτ ≈ 13 300 [2]). All streamwise velocity fluctuations
at z+

I that are incoherent with z+
O were modeled with u∗ (recall Sec. II C 2). As is assumed in the

IOIM, all incoherent (smaller) scales are universal in viscous scaling: this makes the contribution to

u2
+
max from the modeled fluctuations invariant with Reτ . Consequently, the scaling behavior of u2

+
max

with Reτ is envisioned to originate from the superposition component alone [8,14,16].

In order to examine the spectral energy contribution to u2
+
max, due to superposition of outer-region

energy, we consider z+
I = z+

max ≈ 15. When formulating the energy spectrum of the spectral estimate
(superposition) in Eq. (7), we can formulate the superposition contribution to the inner-peak variance
as

u2
+
max

∣∣∣
superposition

=
∫

|HL(z+
max,z

+
O ; λ+

x )|2[kxφuu(z+
O ; λ+

x )

U 2
τ

]
spectrum of û+(z+

max,t+)

d ln(λ+
x ). (11)

Here the integrand is the spectrum of the superposed fluctuations at z+
max, equating the spectrum of

the outer-region fluctuations (spectrum at z+
O) multiplied by the gain squared of the kernel (|HL|2

for z+
max and z+

O). When integrating the superposition spectrum over all scales we obtain the portion
of the streamwise variance at z+

max that is linearly coherent with z+
O .

For a sequence of five Reynolds numbers [8], the premultiplied u-spectra at z+
O ≈ 3.9Re1/2

τ are
shown in Fig. 10; the three subfigures have an (a) outer scaling, (b) log scaling, and (c) inner
scaling of the wavelength axes on the abscissae. In addition, superposition spectra are shown at the
inner-peak location z+

max, alongside the gain squared of the linear transfer kernel, which is assumed
to be fixed in inner scaling [one curve on Fig. 10(c)].

As is evident from Figs. 10(a)–10(c), the energy spectra do not collapse at the small wavelengths
for any of the wavelength scalings where the velocity fluctuations are incoherent between zO and
zmax (i.e., where |HL|2 ≈ 0). In fact, the energy residing at z+

O and at scales λ+
x � 104 decreases with

increasing Reτ [see Fig. 10(c)]. The large-scale energy content, on the other hand, residing at z+
O

and at scales λ+
x � 104, increases with Reτ . Figures 11(a)–11(c) are similar to those in Fig 10, but

now for an outer-region position that is fixed at z+
O ≈ 470. Again, it is noted that where |HL|2 ≈ 0,

the small scales do not strictly collapse and there are small differences between the spectra for
different Reynolds numbers. These small differences, however, are significant and strictly mean that
the IOIM, as discussed in Sec. III B, cannot exactly reproduce the scaling of the inner-peak variance,
in relation to the outer-region input.

Considering this further, we focus on Fig. 11(c) only and discuss a few open questions. The
integrated energy content at z+

O and at the scales that are coherent with z+
max (roughly at scales

λ+
x � 104, although this is properly resolved by coherence spectra as a scale-dependent weighting;

recall Sec. II B) increases with Reτ as AC
1 ln(Reτ ). The superscript “C” here refers to coherent and

AC
1 is likely larger than A1, given that the integrated energy content that is incoherent with z+

max
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FIG. 10. Premultiplied spectra of the streamwise velocity fluctuations at an outer-region position z+
O ≈

3.9Re1/2
τ for five values of Reτ . Alongside are the premultiplied spectra of the superposition IOIM component at

z+
max = 15, which equal the outer-region spectra multiplied by the gain squared of the kernel between z+

max = 15
and z+

O (indicated with the dash-dotted line). The panels sequentially employ an (a) outer, (b) log, and (c) inner
scaling of the wavelength axes on the abscissae.

(roughly λ+
x � 104) decreases with increasing Reτ . Furthermore, we observe that the kernel at the

coherent (large) scales plateaus to ∼0.41. Consequently, the energy superimposed roughly scales
as 0.41AC

1 ln(Reτ ) if one would accept the kernel to be universal for z+
O ≈ 470 and z+

max = 15.
Given that the inner-peak variance scales as 0.63 ln(Reτ ), see Sec. III B, this would imply that
AC

1 ≈ 0.63/0.41 ≈ 1.54. It is noted that this is different to the empirically reported result of A1 =
1.26, and it remains an open question whether A1 would be closer to 1.54 for data at much higher
Reynolds numbers. (Interestingly, Kunkel and Marusic [82] reported A1 ≈ 1.5 from spectra in the
atmospheric surface layer.) Further work is required to resolve these issues, and ideally requires
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FIG. 11. Similar to Fig. 10 but now for z+
O ≈ 470. Note that the gain squared of the kernel, |HL|2, is the

same as in Fig. 10 and that this kernel was derived from a calibration experiment at Reτ ≈ 13 300, for which
z+

O ≈ 3.9Re1/2
τ ≈ 470.

a spectral decomposition based on stochastically coherent and incoherent fluctuations between the
inner and outer regions.

IV. CONCLUDING REMARKS

In this paper empirical scaling laws for the inner- and outer-region trends of the streamwise
turbulence intensity have been considered in the light of inner-outer interactions. Wall-normal profiles
of the u variance, acquired in Melbourne’s boundary layer facility using hot-wire anemometry [78]

and corrected for limited sensor resolution [79], are seen to follow u2
+ = B1 − A1 ln(z/δ), with

A1 ≈ 1.26 [49] in the logarithmic region, while the near-wall peak values at z+
max ≈ 15 follow
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u2
+
max = B2 − A2 ln(z/δ), with A2 ≈ 0.63, resulting in a Reynolds number dependence of the peak

value via u2
+
max = C + A2 ln(Reτ ). The latter relation with A2 ≈ 0.63 has also been observed for

DNS data [16,17,56] and describes boundary layer data taken at the Flow Physics Facility [81]. Note
that empirically A2 = A1/2, suggesting that these scaling laws are related through an inner-outer
interaction.

In high-Reynolds-number wall turbulence, inner-outer interactions are evident from energy
spectra of the streamwise velocity fluctuations in the near-wall region. That is, small-scale turbulence
in this region (or the portion of turbulence that is not coherent with the outer-region) may adhere
to the classical description of near-wall turbulence, in which all inner-scaled turbulence statistics
can be expressed as universal functions of z+ (in this case A2 = 0). However, when Reτ grows,
the energy in the outer region grows. Subsequently, outer-region fluctuations that are coherent with
the near-wall region (referred to as “wall-attached”) are superposed onto the near-wall turbulence.
Hence, the peak variance of u grows with increasing Reτ .

It is noted, however, that since only a portion of the outer-region fluctuations are coherent with
the wall, the total streamwise turbulence intensity in the outer region comprises both wall-attached
and wall-detached motions [1]. In Townsend’s [5] attached eddy hypothesis, the logarithmic layer
of wall turbulence solely consists of wall-attached, geometrically self-similar and inertia-dominated
turbulent motions, and therefore they alone cannot fully describe the relation between the two
aforementioned inner- and outer-scaling laws by solely focusing on the turbulence intensity (all
scales lumped into a single variance). Whether, at extremely high Reτ this portion of turbulence
would dominate the spectrum remains an open question. What is clear is that the need exists for novel
decomposition techniques to fully uncover: (1) the inner-scaled, universal portion of wall-bounded
turbulence, (2) a portion that reflects pure attached eddies in the sense of Townsend (Reynolds
number dependent and obeying inner and outer scalings), and (3) remaining portions that may still be
Reynolds number dependent, such as the emergence of superstructures and very-large-scale motions.
Unraveling the raw signature of wall turbulence, in which the classical view of universal-inner-scaled
turbulence can coexist with Kolmogorov-type turbulence and Re-dependent contributions, such as
the one conceptualized by Townsend, remains a rich area of research.
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